Tag Archives: gender

Four ways breast milk is really interesting

You might have heard a lot that breastfeeding may reduce the risk of infections, allergies and gut problems. But it’s perhaps even more fascinating than you realise.

1. Mums may produce different breast milk for sons and daughters

Dr Katie Hinde from Harvard University studies lactation in monkeys to understand how breast milk provides not only nutrition, but shapes immunity, nervous systems and behaviours in their offspring.

Her team has found that even a monkey mother’s own breast milk can vary in the composition of fat, hormones, protein and minerals. It can depend on her age, how many children she’s had and what she’s been eating now and in the past. But, as this Naked Scientists interview explains, it even matters whether she’s had a son or a daughter.

Rhesus macaque monkeys produce more, lower energy milk for daughters, but less, higher energy milk for sons, in such a way that the overall energy supplied balances out. Why this is is unclear and Dr Hinde’s team is working to unpick these tricky questions. The monkey mothers also produce more calcium for daughters, which Dr Hinde speculates is linked to a quicker development of daughters’ skeletons.

As the interviewer, Kate Lamble asks, how do the monkey mums know whether it’s a son or daughter? Dr Hinde thinks it’s probably down to more hormones produced during female foetal development affecting mammary glands. It could also be behavioural interactions between mother and offspring after birth.

The big question is, does this hold true for humans? Is this something that mattered more in our evolutionary past, but is less relevant in our cosier modern world?

2. Time of day matters

Many animals exhibit day-night rhythms that can affect everything from sleep-wake cycles, metabolism, immune responses and heart rate. And it seems breast milk production is no different.

Milk produced during the night contains higher levels of a hormone, melatonin, which is known to regulate day-night (“circadian”) cycles. Researchers have suggested this can help reduce irritability and prolong night-time sleep, but more work is needed to show this for sure. Adults can manufacture melatonin from essential molecules taken in through the diet, but babies can’t.

Other studies have focused on tryptophan – an important building block in the body’s biochemical manufacturing of melatonin. One study linked higher levels of tryptophan in breast milk at night with a rise in melatonin in the breast-fed babies, which was also associated with more sleep.

To try to establish whether elevated tryptophan caused improved sleep (rather than because of some other differences between breast- and formula-fed babies), another study compared babies who were fed formula milk with added tryptophan at night, added tryptophan in the day and with no added tryptophan at all. Only babies fed added tryptophan at night had better sleep and metabolites in the urine suggested this was down to the production of more melatonin.

Whilst the overall effect on babies’ sleep and whether fluctuations in the makeup of breast milk can really cause changes is still to be fully teased out, these findings suggest that mothers who express milk for their babies for a later time may want to pay attention to what time of the day they did it.

3. Hormones in breast milk can affect behaviour too

Hormone levels, such as cortisol, can naturally fluctuate throughout the day. Cortisol, in particular, is not only important in the stress response but is needed in the mammary glands to stimulate new milk production and protect the survival of mammary cells.

Researchers comparing breast- and formula-fed babies have suggested that higher cortisol levels in milk are associated with more fearful babies. Others studying monkeys and humans have reported levels of maternal cortisol affecting temperament in three-month olds, and this may differ for sons and daughters. For some animals, like red squirrels, it may give them a competitive advantage – cortisol-like hormone levels rise as a forest gets more crowded, which accelerates the growth of their offspring.

Back to Katie Hinde’s research. Again, studying rhesus macaques, her team wanted to know whether these effects were genuinely down to cortisol or because of variations in the amount of nutrients passed on (which are in turn affected by hormone levels). The researchers measured milk one month after birth, and again three to four months after birth. Generally, higher levels of cortisol in milk were associated with babies who scored higher for nervousness and lower for confidence.

But why? They point to evidence that elevated cortisol in humans may lead to reduced growth, and speculate that there may be a trade-off between infant temperament and growth – if more nervous, less confident behaviours reduce activity, then the available energy from milk can be put towards growth, particularly for sons. This may be particularly crucial in times when resources are scarce or competition is high.

At least in rodents, the receptors for these hormones are most abundant in the gut in infancy, before declining into adulthood. This suggests that babies of at least some animals may be taking an active role in sensing the environment through their mother’s milk.


4. Breast milk may shape the friendly gut bacteria

Californian researchers compared the bacteria in the intestines of breast- and bottle-fed baby macaque monkeys between five and 12 months old. They also took blood samples to analyse the immune cells in the growing babies.

The bacteria profiles in each group showed stark differences. The breast-fed babies contained higher levels of Prevotella, Ruminococcus and Lactobacillus, whilst the bottle-fed babies had higher levels of Clostridium. The immune systems of the two groups also differed. Breast-fed babies had more immune ‘memory cells’ and ‘helper cells’ (which help fight off foreign invaders) and produced a sturdier immune response when isolated blood cells were challenged. The researchers noticed differences in chemical signals in the blood known to influence how the immune system develops.

Another study, this time on mice, may give clues as to one way this can happen. By manipulating particular antibodies in maternal milk, these researchers showed that a lack of antibodies produced very different bacterial gut colonies and affected how well the mice could cope with an intestinal insult. Both studies showed that variations in bacterial profiles were still seen many months after the experimental diets ended, indicating that the effects on the immune system may be very long-lasting.

All this suggests that breast milk, possibly through the action of antibodies, causes certain helpful microbes to colonise the gut. These then produce a spectrum of chemicals that help shape the maturing immune system, making it better equipped to fend off infections and less likely to trigger allergic reactions.

The question is, for humans in today’s world, how much would these variations actually matter?


Do all babies start off female?

There was a bit of coverage last week in the scientific and popular press about some research that appears to refute the idea that the human Y chromosome could disappear at some point in our evolutionary future. In early mammals, the Y chromosome was the same size as the X chromosome but, during the course of our evolution has shrunk to a fraction of the size. This has led to the theory that the Y chromosome could disappear altogether if this shrinking carries on, but the new study has challenged this notion by showing that Y has, in fact, remained a fairly stable size over the last 25 million years. It seems that we may be arriving, or have arrived, at the bare essentials – the non-critical genes have been stripped away over time and natural selection has preserved the vital ones.

The jury’s still out on whether the Y chromosome will become extinct – “we won’t nail it without a crystal ball”, said Professor Darren Griffin of University of Kent in a Guardian article – but this sparked a memory of a conversation I had a while ago about what it is to be ‘male’ or ‘female’.

Some of wife’s friends had been debating whether or not all babies “start off as females”. This debate arose, I guessed while desperately trying to recall my high school biology classes, because of the fact that all fertilised embryos develop along the same path, regardless of the genetic make-up of the embryo. This is until certain genes on the Y chromosome (if present) are activated at around eight weeks and male-associated hormones, chiefly testosterone, are produced that act on some cells to start forming male-specific organs. Without these hormones kicking in, which is the case  in XX embryos when no Y chromosome in present, the cells in the developing embryo go on to form female-specific organs. This means that fertilised embryos under normal circumstances will develop female-specific sex organs unless a hormone cue is activated that signals otherwise.

So all embryos are female, then?

Hmm, perhaps not. One can still make a genetic distinction between males and females at the very point of fertilisation – XX chromosomes will give rise to females and XY will lead to males – and this remains static throughout an individual’s development (and, indeed, life). There are, however, some clinical oddities that throws some confusion into the mix. Some males, for instance, have two X chromosomes but develop as males instead of females because of the presence of a third, Y chromosome that contains the genes to provide the male hormone cues (“Klinefelter’s syndrome“).

So could we define maleness as the presence of at least one Y chromosome (some males are XYY too)?

Not really, because that definition comes unstuck when we consider individuals who are XX but develop as males (at least outwardly), due to the gene for the male hormone cue being copied to one of the X chromosomes (“XX male syndrome“), or individuals who are XY but develop as females, due to a defective Y chromosome (“Turner syndrome“) or mutated Y genes (“Swyer syndrome“).

This leads to complications when trying to enforce a purely genetic definition of gender. The International Olympics Committee for years attempted to enforce this view to adjudicate on cases of gender uncertainty, believing that this represented a more definitive and less intrusive test than physical examination. In this Y-centric definition, without ever meeting an individual and having only a few of their cells, the presence of the Y chromosome or any of its genes (such as the male sex determining gene called ‘Sex-determining Region Y’ (SRY)) would lead to the conclusion that those cells came from a man.

However, for the reasons I mentioned above about all the genetic uncertainties, pressure from a number of medical associations in the USA thankfully led to this sort of test being dropped by 2000. A ‘one-or-the-other’ test of this sort simply does not fully account for the complexities of gender and can lead to discrimination and unfair impediment. The lead opponent of such gender screening, Georg Facius, even proposed a ‘third gender’ for those that could be considered both male and female. One instance where this could be applicable is in cases of “Androgen insensitivity syndrome“, in which XY individuals show abnormal responses to the masculinising hormone androgen. Because the effects can vary, some individuals are anatomically male but have reduced fertility (mild), some possess ambiguous genitalia (partial), while some are almost indistinguishable from XX females (complete).

Even going back to the possible demise of the Y chromosome casts doubt on this Y-centric world. The experts that do anticipate the disappearance of Y are not predicting the end of ‘males’, rather they envisage another sex determining mechanism will take over. This happened before the emergence of the Y chromosome (sex was determined by environmental factors, such as temperature, and still is in some reptiles) and occurs in mammals where the Y chromosome has disappeared (in spiny rats, for example, the male-specific genes have hitched onto other chromosomes).

And this is all before we get into the complex world of gender identity, such as when an individual of one gender is uncomfortable being associated with that gender, which may be environment-driven (or may not be, or may be a little bit). Nor have I touched on psychological and behavioural differences, which lie on a continuous and overlapping spectrum between males and females and are often socially defined (and therefore subject to variation and change).

So none of this means that an embryo is female before the male signals kick in. It is perhaps more accurate to say that an embryo is gender-neutral, i.e. neither male nor female, until towards the end of the embryonic period, at which point anatomical differences start to become apparent in the foetus. But even then, as highlighted above, someone may share characteristics of both sexes and remain ‘double gender’.

Which is all a long-winded of way of saying that a binary male-female distinction is a little fuzzy.